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APPROXIMATE PREDICTIONS OF THE TRANSPORT OF THERMAL
RADTATION THROUGH AN ABSORBING PLANE LAYER
By Max. A. Heaslet and Franklyn B. Fuller
Ames Research Center
Moffett Field, Calif.

SUMMARY

The transport of thermal radiation through an absorbing medium
bounded by parallel walls is predicted. The walls are heated and are
assumed to emit, reflect, and transmit the radiation isotropically.
The medium is assumed to be in local thermodynamic equilibrium and to
have radiative characteristics that can be averaged over the entire
frequency range. First, relations are given whereby the solution
becomes available once the problem associated with the case of opague,
black walls is solved. ©Second, different methods are employed to
derive approximations of radiative flux and temperature distribution
through the medium. Simple formulas, of interest in engineering design
and analysis, appear as a by-product of the study. Comparisons are

made with previously published numerical results.
INTRODUCTION

A number of references are now available in which the equations
characterizing the transport of thermal radiation through an absorbing
medium are formulated and mathematical techniques leading to actual pre-

dictions are developed. Foremost among these are the treatises of



Chandrasekhar [1], Kourganoff [2], and Sobolev [3]. The analysis
retains considerable algebraic complexity, however, partially because
of the multiplicity of physical parameters affecting the phenomena and
the number of additional idealizations that are of practical interest.
Thus, in spite of the theoretical understanding that has been achieved,
and although numerical solutions by means of high-speed computers offer
no essential difficulties, the problem of efficient presentation of
results remains a challenge. The present paper attempts to contribute
some efficiency of presentation to predictions of radiative transport
through an absorbing medium contained between two parallel walls with
specified temperatures and known radiative characteristics.

Two parallel objectives are to be kept in mind. First, a close
connection is established between the general problem of radiative
energy transport between walls that emit, transmit, and reflect iso-
tropically and the problem of transport between opadque, black walls.
The latter case has been treated by Usiskin and Sparrow [4] and numeri-
cal solutions have been given for different values of the optical thick-
ness of the plane layer between the walls. It will be shown here that
the results of [4] may be applied with only minor modification to the
more general case. Second, since the calculations of Usiskin and
Sparrow are available for comparison, approximations to the solutions
of the governing equations are studied. In this way, rather simple
expressions are derived that provide a surprising accuracy and that

certainly should be useful in preliminary design or engineering analysis.
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In the next section the governing equations are derived. The more
or less conventional approach leads to an expression for flux of radia-
tion that was given explicitly by R. and M. Goulard [5]. Differences
in terminology were considered necessary and the derivation of wall con-
ditions was cast in a different form, all of which prompted the inclu-
sion of this basic material. The discussion of the general solution
gives a proof that iterative methods can be used to solve the basic
integral equation and then relates the problem to the case of bl;;k
walls. The remaining portion of the paper deals with approximations
and comparisons between solutions involving differing orders of accuracy.

Three methods, yielding increasing degrees of accuracy, will evolve.
The first, based on the use of an exponential influence function in
place of the exact exponential-integral function, simplifies the analysis
so much that all results can be expressed algebraically. The detailed
distribution of the temperature (or the emission) within the medium suf -
fers increasing inaccuracy near the walls but further integration to
determine flux between the walls leads to predictions that are never in
error more than a few percent. Perhaps more important is the fact that
the formulas are easily manipulated to display major effects of varia-
tions in the various physical parameters. The second method is similar
in approach to the Milne-Eddington approximation used in the study of
stellar atmospheres and improves the accuracy of the predictions without
introducing undue complexity. Finally, an iterative calculation of a

particularly simple form provides estimates that agree well with the



more accurate numerical solutions that are available. These iterative
calculations are then used to establish the degree of confidence one

can have in the other approximations.

TABLE OF SYMBOLS

A (1/2)[(1/2) - Ea(gp)]
B, Planck's function (see eq. (5))
® xt
En(x) integroexponential function of order n; E,(x) =L/ﬂ e X5 gt
1

H(t,t7,) integral used in iterative solution (see eq. (L8b))

I(x,n) specific intensity, energy per unit area, time, solid angle
J local emission coefficient, per unit mass
J source function (see eq. (5))

Ko, K1 weighted integrals of emission function (see egs. (27) and (32b))
L geometric thickness of plane layer (fig. 1)

m, n coefficients used in exponential approximation of En(x)

(see eq. (35))

a rate of energy transport per unit area
r reflectivity

t transmissivity

T temperature, absolute

X geometric depth in absorbing layer

7 see equations (27)

o gbsorptivity

N



B(t) emission function (see eq. (11))
¥4 coefficient of cubic term in approximation of emission

function (see eq. (L6))

A see equation (29)
€ emissivity
e angle between ray and element normal to surface (see fig. 1)
K local absorption coefficient, per unit mass
A slope of linear approximation to emission function (see
eq. (452))
V3 cos 6
£ optical depth in absorbing layer (dt = prk dx)
o) local density of absorbing medium
c Stefan's constant
o(t) dimensionless form of emission function (see eq. (25))
Subscripts
o] evaluated at €& =0
L evaluated at & = Er, =\/pL pk ax
o
Superscripts
+ right-going (¢ increasing) quantity

- left-going (¢ decreasing) quantity



GOVERNING EQUATIONS

Figure 1 shows the orientation of the coordinate system to be
used. The two walls are situated at x =0 and x = L. Let conditions
at either wall be indicated by the subscript i where i =0 or L.
Then, we have temperature, Ty, emissivity, i, absorptivity, oi,
reflectivity, ry, and transmissivity, ti, prescribed as known boundary
conditions where

ai = €5 ) (la)

@ ¥ty +ry =1 (1b)

It is assumed that the gés and walls have characteristics that may be
averaged over the entire frequency range of the radiation, so that a
gray analysis applies, and the walls emit and reflect diffusely.

The basic equation of radiative transfer is (see, e.g., [2])

ax(x,u) = -pkI(x,u) + pJ (2)

" T

Equation (2) is preferably expressed in terms of the independent vari-

able ¢t (optical depth) where

dt = pk ax (3)
and thus becomes
L U (L)
dg

.- u v ——— o —— 00 noa




where J (=3j/pk) is called the source function. Provided the refrac-
tive index of the medium is 1 and local thermodynamic equilibrium

is achieved, the source function is given by

(o0

= = 9 p4
J—vadV-TET (5)
o]
where
3
By <% 2o _ exp( -hy/KT) Planck'!s function
c® 1 - exp(-hv/kT)
v frequency
h,k,o Planck, Boltzmann, and Stefan constants
c velocity of light

The notation

I'(t,w) O0<p<l

T7(&,u) -1<wp<o0

H
il
IA

(6)

Il

serves to distinguish the rate of flow of energy per unit area and
solid angle for positive and negative values of u(=cos ). With this

notation, the solution of equation (4) in the two regimes becomes

3

I7(k,u) = T7(0)exp(-t/u) + L/q J(e dexpl-(& - &,)/nl(ae,/n) (7a)
£L

I7(e,m) = T(ep)exnl (& - &) /ul + fg 3(e Vexpl (¢ - £,)/ul(a8,/-1)

(7o)

where I+(O) and I7(&p) are the isotropic specific intensities induced

L
by the walls at ¢ = O and &y, ==J; pt dx, respectively.



The total rates of energy transport per unit area in the positive

and negative x directions are

at(e)

1
QﬁLZ: IF(e,m)u dn (8a)

-1
q7 (&) 2ﬂL/n I7(e,p)p du (8b)
(@)

The values of q (&) and q (&) are sometimes referred to as the right

and left fluxes of radiation. Equations (7) and (8) yield the two

relations
3
at(g) = 2 Eg(e) + 2nk/ﬂ J(g)E=(E - &,)aE, (9a)
(o]
tL,
q (&) = 297 Es(tp, - &) + 2n\4; J(e )E=(E, - g)ag,  (9p)

where qg = ﬂI+(O), 9 = nI-(gL) and E,(t) is the nth exponential

integral defined as

1 00 -Ex
En(t) =\/ﬁ e-g/p w2 ap =\/P exn dx
0

If local unidimensional energy flux (net energy transport per unit

time and area) is denoted q(t), one has
a(g) = a™(g) - a7(8) (10)

and q(g) > 0 obviously corresponds to a net energy flow in the positive

x direction. From equations (9) and (10) follows the fundamental rela-

tion. After setting



xJ(E) = B(E) = oT*(¢) (11)

one gets

a(t) = 2af Ea(t) - 2q7 Ealty - &)

L
r2 [ B )een(s - t)m(lE - £gDa, (12)
(@]

It will be noted that the expression sgn(t - gl)Eg(Ig - gll), in the
integrand of (12), is discontinuous when gl = E. This rdquires care
in differentiation.

Equation (12) is the flux equation for our unidimensional problem.
The notation does not agree precisely with conventional astrophysical
terminology but the choice of variables should preclude any ambiguities.
The value of q(t) differs by a factor x from the astrophysicists!
flux, usually denoted F. ©Sign conventions are also changed. The inde-
pendent variable & is, of course, dimensionless since the volumetric
absorption coefficient pk 1s measured in terms of the reciprocal of
radiation mean free path length.

The dimensionless parameter E£r, (optical thickness of layer) will
be seen later to play a unigue role in fixing the nature of the varia-
tion of the emission function PB(E). It should be remarked that in some
references the volumetric absorption coefficient is assumed a constant
so that gL becomes pkL. The transformation to optical path length
in equation (3) shows that this restriction is not necessary. In a

recent paper, Probstein [6] has developed an analogy between pkL and



the inverse Knudsen number of low-density fluid mechanics. The Knudsen
number appears in moleculsr transport phenomena and is the ratio of
molecular collision mean free path to the characteristic flow length.
The term pkL can similarly be expressed as the ratio between charac-
teristic length and the mean free path of a photon. This concept is of
considerable heuristic value and enables Probstein to present, for the
case of black walls, an approximate expression for flux by means of the
'analogy. Similar approximate results that apply to more arbitrary wall

conditions will be considered in the final section of this paper.
Calculation of Input Conditions at Walls

The magnitudes of qg and qi are related to the wall temperatures
(or direct wall emission) as well as the wall parameters introduced in
equations (1). Two equalities exist which serve to fix these values.

Thus, one can write the two balances

qg = €o0T% + Todo (132)
of, = epolp* + rrap (13pb)

These relations simply state that the energy per unlt time and area
coming from each of the walls is equal to the direct emission plus the
reflected portion of the incoming radiation from external sources, that
is, from the other wall and the medium between the walls. The quantita-

tive expressions for g5 and qg are, from equations (9),

10



&

EL
= 2q; Eg(tp) + Ef B(E,)E=(E )ag,
(o]

3
q; Eq:; Eg(tp) + 2/; B(&,)Ex(Ep, - £,)aE,

From equations (13) the desired conditions at the walls now follow;

thus

q:)- [1 - hrorLEse(gL)]_l |:€00'To4 + 2roeLE3(§L)0’TL4

Er, fL
vong [ Blsma(e)as, + bromgBa(sy) [ B(e, )y - gl)agl}
O o]

(1ka)

-1
q_]::l [l - )-I-I'OrLEsa(gL)] [ErLeoEs(éL)O’TO4 + GLdTL4

£, €1,
+ erLfo B(e)E=(ky, - £,)aE, + urorLEs(eL)j; B(&l)Ee(ﬁl)d§1:|

(1)
Basic Integral Equation for Constant Flux

For constant wall temperatures and local thermodynamic equilibrium,
a(t), as given in equation (12), must be a constant. The derivative of

q(t), from equation (12), is

L
% = -2q5 Bo(t) - 297 Eo(gr, - &) + 4B(E) - 2f B(e)E(lE - &, 1)aE,
o
- (15)



and for constant flux one gets the basic integral equation

37
B(e) = 2 of () + 3 of Balty, - 8) + 3 f B(e)E(lE - £, 1)ae,
(o]
(16)

Two special cases of equation (16) are of particular interest.
First, for opaque, black walls, t; = O, r; = O, and the wall emissions,
as given in equations (14), are

+ 4
qO=O'TO 5 qL=o—TL4

Usiskin and Sparrow [L4] have given numerical results corresponding to
thege conditions. The importance of this case is enhanced once one
observes in equations (1L) that qz and qi have no explicit dependence
on £ and that the analysis can proceed formally without a precise
stipulation concerning physical conditions at the walls. Equation (16)
is thus used to determine solutions in terms of the parameters qg

and qi and the connection between these parameters and the actual
boundary conditions 1is established later in an auxiliary calculation.

A second case of interest arises in relating equation (16) to the
problem of & plane, parallel, semi-infinite stéllar atmosphere. This
idealization occurs when the left wall at x = O is transparent (to =1,
ro = 0) and the right wall is allowed to recede to an infinite distance.

Here, the driving terms in the right member of equation (16) vanish,

since qg = 0 and £ = ». The integral equation becomes homogeneous

12 -



B(e) = = f B(6)B2(lE - &, 1)aE, (17)
o]

\V)

and the physical constants that should determine the magnitude of the
emission function PB(&) seemingly disappear from the problem. Actually,
the one constant that fixes the radiation level in this case is the con-
stant value of flux. The function B(&) must be related to q which
means that equation (12) cannot be disregarded. Equation (12) is, in
fact, the fundamental governing equation; the derivation leading to
equation.(l6), or (17), involves the loss of a physical constant, and

it might be expected that under the most general conditions a restoration
of the constant would be required.

In astrophysics the study of a semi-infinite atmosphere under con-
ditions involving thermodynamic equiiibrium is referred to as Milne's
restricted problem, and equation (17) is called the Milne (or Milne-
Schwarzschild) integral equation. A more than substantial literature
exists on the mathematical analysis of this particular idealization.
Milne's equation is obviously a limiting case (gL - oo, qz - 0) of equa-
tion (16) and in this sense the highly accurate solutions in existence
for the Milne problem can be used as a check on extreme conditions for
the present study of radiation transport between parallel walls.

Passage to the limit is not always direct, however.

13



GENERATL; SOLUTLION

Equation (16) is a Fredholm integral equation of the second kind.

It takes the clasgssical form

tr
B(e) = £(¢) +§ fo B(e )EL(lE - £ 1)ae, (18)

where
2r(e) = of Eo() + af Ba(tp - &)

Much of the mathematical literature devoted to this type of problem is
built around the use of the Schwarz inequality (see, e.g., Tricomi [T7],
p. 50 et seq.) which in turn leads to integration of the square of the
kernel function. Rather than relate the analysis to general concepts,
it is more expedient to derive what results are needed. The knowledge
that the kernel E (/& - £, [) is everywhere positive will be used.
Let &5, be a finite constant. We prove first that the solution

can be calculated by repeated iteration. The first (n + 1) iterations

in the calculation of B(&) lead to the sequence PBp+1(E) where

1t

Ba(g) = £(¢)

Er,
B2(t) = £(¢) +% fo (e )BL(lE - g [)ag, (19)

ik



Bpra(E) = £(&) +

N+

Er,
[ etemie - g g, + .
o}
1 S €1,
+ n f dgnEl(lg - Enl)f dgn_lEl(lgn - gn_ll) . .

i,
f dglf(gl)El(‘gg - Ell)
(e]

The relations

fn
[% \Z: Ei(le - gi|)dgi]max = % [2 - Bx(t) - Bzt - g)}max <M<1
(20b)

apply for finite E£r,. Then since the kernel is positive, repeated use

of the mean value theorem for integrals yields

Brer(E) € Fuax(l +M + M2 4, . . + M) <

me.X.
1L-M

The sequence for positive terms therefore converges for all E.
For a nonunique solution to exist, a finite, nonvanishing solution

of

p(e) =

N+

L
Jf B(e )EL(lE - &, 1)ae, (21)
o]

would be required. Meghreblian [8] has shown that this is impossible

as follows. From equations (20b) and (21), the inequality

p oL
BT <F [ 182 Imls - 8088, S MPnaxl < 1Pumcl  (22)

holds. But this cannot apply for all & in the range O < & < Ep.

15



The finiteness of E£f is an important condition underlying the

above results. Retaining this condition and returning to equation (16)

one can show that
5 (L) - L (gf 4 g7) (23)
) "2\ T

and that the function is antisymmetric about the point ¢ = gL/e. In
fact, straightforward manipulation of equation (16) reveals that the
function B(&) + B(gL -E) - (qg + qi) satisfies the homogeneous form
of the integral equation (eq. (21)). But for finite &, we have noted
that the solution must vanish throughout the range of integration and

this establishes the antisymmetry property

T
Qo *+ 9, % + 4,

2 2

B(g) - - B(Ep, - &) (24)

When ¢ = £1/2, equation (23) is seen to hold.
In actual calculation and in the presentation of results it is

convenient to introduce the function @(g), where

_Be) St
o(E) G- e ) (25)

From equations (23) and (24) one concludes that w(gL/2) = 0 and that
o(¢) is antisymmetric about the point & = &;/2. The integral equa-

tion for o) is, from equations (16) and (25),

1 °L
o(t) = = [Ba(tp, ~ &) - Ea(E)] + E'L/P o(t)BL(lE - £, ag, (26)

L
s

The function o¢(&) has no explicit dependence on q; and qi.

16
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function
istics.
dividing

(a)

(o)

Calculation of Solution

main obJective of the analysis was to calculate the emission
B(g), knowing the wall temperatures and radiative character-
Equation (25) shows that when PB(&) is made dimensionless by
by qi - qg, the problem separates into two calculations:
Determination of the universal functions o(&) which depend
on the single parameter Er,-
Determination of (qg + qﬂ) and (qﬂ - qé) which are constant
for given conditions but which depend on all of the given

parameters of the problem as well as the solution @(g).

Before the numerical solutions are presented, additional relations

will be given to establish the interdependence between the various

parameters. We assume here that €, has been fixed and that the

function

©(t) has been calculated. Substitution from equation (25)

into equations (14) then yields, after setting

Z =1 - brorpEg®(&g) )
1|1
A=3 [5 - Es(ﬁr)] 5 (27)
L
Ko(er) = fo o(&,)E=(g,)at, )

the two simultanecus equations for qé and gﬂ

7



q§ [Z + 2ro(Ko - A) - hrorLEg(gL)(Ko + A)] + Q£ [-2ro(Ko + A)

+ broriEa(tr) (Ko - A)] = eooTo® + 2rOE3(§L)€LGTL4

af [-2r; (Ko + A) + broriFa(er)(Ko - A)] + of [2 + 2rp (K - A)

- ll‘:':'OI"l_:,l'T:Sa(‘::»]:,) (Ko + A-)] = QTLES(EL)GOO’T04 + €1-_’0"I']'_'4

If the additional notation

A =

z + 2[(ro + rp) (Ko - A) - brorpEs(tr) (Ko + A) - 8rorpKoAl

1 - I'OI'L + (ro + rL - erorL)[EI(o(gL) + E3(EL) - 5}

1

(28a)

(28b)

(29)

is introduced, the determinant of the coefficients of the simultaneous

equations is Z.A and the solution of equations (28) yields

+

g

9,

Thu

18

S

D

{GOO‘Toé[l + 2rL(Ko -A)] + ErOELO.TL-’-L[EB( EL) + Ko + A]}

i{ErLeooTo‘L[Es(gL) + Ko + Al + epoT*[1 + 2ro(Xy - A) ]}

- 1
ar - 45 = Z'[(l - ro)eroTr® - (1 - rp)eooTy*]

9, + % = i{eLGTL‘L[(l + ro):"' bro(Ko - A)]

+ eooTo*[ (1 + ) + brp (Ko - A) ]}

From equations (12) and (25), at & =0

- (- 4 [ L - mse) - 2ol

(302)

(30b)

(31a)

(31b)

(322)

2



and at & = &7/2

a=(qf - o [2m (52) v ey | (320)

where

tEr/2

K—l( EL) = /;

Flux, q, and the emission function, B(t), are finally expressed

¢
(&, )En <—éL— - €1> a

in terms of the universal function cp(g) , the boundary conditions involv-

ing oTo*%, ch]-_,4 and the wall parameters as follows:

B(E)

gﬁu-ra%wf-<1-%kw%ﬂmm+gew%ﬂu+r@

1
— €

+ bro(Kg - A)] + 5

o0To* [ (1 + rp) + brp (Ko - A) ]}

1]

%(“l -1o)er ol - (1 - r)eqoTo*lo(E) + % eroTr*{1 +2ro[ 2Ky (&g

+ Ea(t) 1} + % €00To* {1 + 2rp 2K (&r) + Es(gL)]}> (33a)

a = S5 (1 + 2Be(sp) + Ho(sr) 1L - ro)eroly* - (1L - rp)eqoTo*]

]

.
) % [Es <?L - EKJ [(1 - ro)egory® - (1 - rp)eqols”] (33b)

where A, Ky, K1, and A are given in equations (27), (29), and (32).
The integral equation (26) for ¢(t) can be rewritten in an

alternative form. From equations (12) and (32) this is

19



; % - Es(p) + Es(&) + Bs(ty, - &)

EL,
= 2L/P ot )sen(e - £)Ex(lE - £, 1) + Eo(g;)]aE, (34)
(o]

Equation (26) can be rederived from equation (34) by taking the deriva-
tive of the latter with respect to €. Either equation is adaptable to
the calculation of @(g) by numerical means. The first is a Fredholm
equation of the second kind and, as shown previously, the proof of the
convergence of iterative methods offers no analytic difficulty. Numeri-
cally, however, the singularity in the kernel at § = £, 1is an incon-
venience requiring special attention. Equation (34) is a Fredholm equa-
tion of the first kind, is less well adapted to general analysis, but

is numerically more tractable since the kernel is finite everywhere
although it does possess a step discontinuity at £ = &,.

Equation (33a) shows that the variation of PB(t) depends essentially
on the variation in w(g). For theoretical predictions, therefore, the
basic calculations can be carried out for the case of opague, black walls
and for a given optical thickness £ in order to fix o(t). Thus, the
graphical results given by Usiskin and Sparrow [4] or by Meghreblian [8]
can be used directly. The terminology used here differs from these ref-
erences; it suffices merely to note, however, that @(g) is the devia-
tion of the dimensionless emission function from its value optically mid-
way between the walls. Following this determination, the exact level

of the function PB(&) can be found after an additional integration to

20




determine K, or K, and K;. It will be shown in the next section
that good approximations of the solutions can actually be carried out

analytically. Graphical results will be given then.
APPROXTMATE SOLUTIONS

In this section, approximate solutions to the transfer equation
are given in analytic form. First, the nature of @(g) will be deter-
mined when the kernel is arbitrarily replaced by an exponential function.
This type of approximation is often used in more complex problems involv-
ing the coupling of radiative and other modes of energy transport (see,
e.g., [9]). Situations like the present one, in which different orders
of accuracy can be achieved, are of value in assessing the degree of
accuracy that can be expected. Second, the exact kernel is retained
but the analysis is restricted to the determination of a linearized form
of @(g) together with its improvement by means of a single iteration.
In general, this solution represents an improvement in accuracy over the
first case but at some cost in ease of calculation. Third, a more
refined process, representing a modified iteration of the exact equation,
will be carried out. These latter results compare well with the pre-
viously published numerical solutions for 0 < gL‘g 10.

A commonly used approximation for Eo(t) involves its replacement

by an exponential function. More specifically, the relation

Bo(t) ~ me ™t (35)

21



is introduced where m and n are chosen in some plausible manner. A
plot.of the two functions shows that small deviations can be maintained
throughout the full range of £, even though local discrepancies in the
derivatives of the functions become excessive., Thils approximation was
implicit in the early work of Eddington [10] on stellar atmospheres,

the rationalization stemming from an averaging over the angular variable
6 (or p) of the integrals appearing in the derivation of the transport
equations. Different values of m and n are found in the literature
since compromises must be made when mean values of specific intensity,
flux, and radiation pressure are required. A discussion from the point
of view of the astrophysicist is given by Ambartsumian ({11}, p. 17 et
seq.). More recently, Vincenti and Baldwin [12] have proposed m = n2/3,
n = 1.562 which follow after the requirement is imposed that flux be
given properly in the Rosseland limit of strong absorption and that equa-
tion (35) correspond to a least squares fit between the two functions.
The first of these conditions is well founded physically and is common
to all approximations. The second condition is obviously more arbitrary.
Proposed values of n in the literature fall usually in the range

3/2 <n< J3; the value 3/2, preferred by most authors, is the one
associated with Eddington's approximation.

If the flux equation is written as

tL,
—3 = _[By(E) + Baleg, - €)1 + 2f o(t,)sen(t - £,)B2(le - &, 1)ag,
. o]

L
(36)

22



the exponential approximation can be introduced in the integrand from
equation (35). The resulting integral equation can be solved explic-
itly but the degree of approximation is affected only slightly and the

analysis is made muich simpler if the further approximation

Ea(t) =j; Fo(g,)ag, = 2e™ = % e ¢ (37)

is introduced. The integral equation then becomes

tr,
—— -3 {e'ng * e'n(gL’g)} * Emf ot )san(t - t)e™ B2l ag
o 0
(38)
For constant flux, the solution is
g
o) = —2— (& - F) (39)
2 +n

£,

and consistent with the approximation used, one has

Ko = = 2 - " e-n§L> . Ky = I_1<_ =2 . e-nﬁL/2>
6 \2 + nkp, ’ 6 2 + nér,

For all values of the parameters the emission function B(t) is therefore

a linear function of ¢. From equations (31la) and (32b)

-q - Ln (40a)

ar - 45 3(2 + neg) -

- qg ) 7(; - TO)EIFTL4 - (1 - I‘L)eoﬁTo4 |
2[n - (3/2)] - ntgln + (3/2)] n 2 - nkp,
1+ (ro + TL) - ErorL =z
3(2 + np) 32+ ntg

(LOb)
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At extreme values of E1» flux is given by

1, <1
e I > o)
T 555 ’ €1, 1

When n = 3/2 and when the walls are opaque and black, equation (40a)
is the interpclation formula for flux derived by Probstein by completely
different methods. Probstein's graphical comparison of his formula and
more accurate results indicated good agreement. Further comparisons,
including different emissivities and reflectivities, will be given in
figure 2.

Equations (41) give intuitively obvious results: for optically
thin media (gL << 1) flux is merely the difference between the total
emissions from the two walls; for optically thick media, where the mean
free path of the radiation is small, the flux is in agreement with the
predictions of Rosseland's approximation. The Rosseland theory reduces
the radiation transport equation to the heat conduction equation with
an effective, nonlinear conductivity. For a gray material with unit

index of refraction, flux is given by
L g
q_z_-——E (L2)
Equation (42) holds only for €1, >> 1 and boundary conditions are strictly

applicable only to the case of opaque, black walls. Integration of equa-

tion (42) for constant ¢ then leads directly to the second of equa-

tions (L41).
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An improved approximation can be achieved through a study of equa-
tion (26) directly. The function o(t) is known to be asymmetric about
E = gL/E. To a first order, therefore, it is proper to set
(k) = AE - (6p/2)] and seek N. Direct substitution may then be made
into equation (26), or into the derivative of this relation, which has

the form

@'(8) = T [1 + 20(0)1Ea(t) + T [1 - 20(tr) IBa(ty, - &)

Er,
+3 [ e ems - s, (53)

The calculation gives, at £ = gL/z,

3 E1(&/2)
ne () - ol0)m: %—) - ()

The linear approximation for ¢ yields ¢(0) = -A&;/2. This latter

expression, together with equation (L4), gives the following predictions

tr/2
= e 7 E;(EL/E) (45&)
E‘L/EE 2)[ & - o
o(t) - e 1(§Lé e - (£1/2)] (155)
K = A {15400 - Baler)] - Z [26(0) + Baler) 1}
(L5e)
g g 3
Ky = A —EL—EQ, EL-> - [E,;,(o) - Es %)]}
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N [1 .3 Eg(éL/Q)Es(gL/z) - El(gL/g)E4(§L/2)} (454)

El(ﬁﬁ/g)

- qg- = [(l - TO)GLUTL4 - (l - rL)GOGTO4] {l

g ~,
Flrg ) [-2n(Z ) (1o nepme(y) - 2Nmley)

-1
-2rory, [-K %;-— §> + (1 - N )Ea(tp) - 2%E4(§L)J }‘ (Lse)

Equation (L45a) is in agreement with the determination of slope given by
Meghreblian [8] for black walls but equation (L45d) does not conform to
his result. The linear approximation of @(g) does not yield constant
flux and a decision must be made concerning its evaluation. The f%ux
at gL/e, as given in equation (hSd), gives mich better accuracy than
flux evaluated at the wall.

Equations (L5b) and (45d) represent improvements over the simplifi-
cations inherent in equations (39) and (LO). The degree of accuracy of
equation (45b) is, of course, limited since the predicted emission is
expressed as a linear function of ¢ throughout its range. By virtue
of the additional integration to get flux, however, equation (45d) should
provide good estimates. One notes that for extremes in §£;, equa-
tion (45d) reduces to the predictions of equations (41), as indeed it
should from physical considerations.

An improved expression for o¢(t) now follows by iteration when
equation (L5b) is used to evaluate the integral in equation (26). This

process is mich to be preferred, analytically, to the more general
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iterative scheme employed in equation (19) since the first estimate is
closer to the exact solution. The process is, in fact, similar to the
iterative use of the Milne-Eddington approximation ([2], p. 87) to
achieve a solution of the Milne equation.

Continued iteration beyond this stage is more difficult. A simpler
process is available, however, in which integration of products of the
transcendental functions is avoided while the accuracy is increased.

To this end, in view of the known antisymmetry about £ = gL/e, we add

8 cublc term to the linear expression for @(g). Thus, we put

o(8) = A (e - —> <§ §§>3 (46)

where the slope A at ¢ = gL/e is given by (45a). A first approxima-
tion is found by inserting the linear form (45b) in the integral equa-

tion (26) to find

o{2)(e)

1

= [Ez(éL - &) - Ez(8)] +%Af <§ >El(lg - £, D)ag,

<§ g'—L>+§ (1-Mep)[Ba(er, - £) -Ba()]+ 2 [Ba(t) - By, - 8]
(47)

A value for y is determined by equating expressions (46) and (L7),

(@ [0+ 1ou )

evaluated at €& = O;
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Now put

R R

in the integral equation (26) and find

1 1 ‘L
o(2)(e) = m [B=(er, - &) - B2(£)] + 3 fo (2 (e dmale - &, Dae,

(L48a)
There results from this integration
o)) = ol P(e) + % 7(1_)H(_e,,§L) (48p)
where
3
H(E,Er) = <§ >E1(Ie - &, l)dgl

2(& - —> < > < [Ea(g) - Eo(kp, - )]

:
+3 (%’) [Es(t) -Es(tp,- £)] + 38r[Ba(E) - Ealep - £)]
+ 6[Es(t) - Es(tp, - £)]

This process can be repeated by setting up the scheme

28




7 (e) = 2 (e, - g—@ + 7(2) (s - %)3 !
(2 = . (5—233 [CP(Z)(O) + % NiL]

?2(e) = ol (e) + 2 Pnce ep)

S

7™M (e) =2 (.e, - %’) 472 <g - %‘—)3

y(B-2) <§>3 [cp(n‘l)(o) + 3 %EL}

o (e) = ol M(e) + é 72 V(e e ) J

and increasing n until successive results agree to the desired number
of figures.

When a solution for @(g) hag been obtained having the required
accuracy, the quantities q/(qi - qg), Ko, K1 can be calculated accord-
ing to their definitions in equations (27) and (32). For this purpose,

it was thought to be sufficiently accurate to use the cubic expression

$(n)(§) =N <g - %%) + 7(n-l) <§ ) %%;f

and evaluate the integrals analytically, rather than to perform a numeri-
cal integration using @(n)(g). The results are, using superscripts to

indicate correspondence with the iterates shown in equations (49):
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%™ (5p) - [ M (e - ) 0 () ] me e,

A { —% tr,[Ea(0) + Ea(ep)] + [Ea(0) - E4(§L)]}

i

, (@) { (%>S[Es(o) + Baltp)] + 3 <§2—L>2[E4(o) - Ealtp))

€
-6 () 158(0) + mule)] ¢ 618(0) - Eo(s)]}  (50m)

(e - {E—L Eg <§L> [EAO) - Ee >J}
R CHCRICNG
Es @Ii) -6 [EG(O) - Bg @Ii)] } (50D)

Once X, or Ki; is known, the flux follows from (32a) or (32b).
Finally, numerical values for the quantity ( qo) can be found by
using the expression (50a) for K, for the calculation of A accord-

ing to (29) and then using equation (31la).
FRESENTATTION AND DISCUSSION OF RESULTS

In this section the analytic solutions previously derived will be
shown graphically and some formulas of special interest will be given.
Attention is directed first to flux since reasonable accuracy is not

difficult to achieve.
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The ratio q/(gﬂ - q;) does not distinguish between black-wall
emission and the more general case. Hence, the two formulas, equa-
tions (402) and (45d4), can be compared directly with the numerical
solution for black walls in [U4] and [8] and also with a recent exact
calculation of Hottel [13]. Figure 2 shows our predictions. The solid
curve gives results from the iterative use of the cubic approximation
to @(&) as outlined following equation (46). Through the range
0 < &y, £ 2 there is excellent agreement with published results and the
s0lid curve appears to be a valid criterion to judge the merit of our
other approximations. Unfortunately, discernible differences from the
references can be detected in the range 3 < £r, < 10 but comparable dif-
ferences also exist between the references themselves. Since there is
complete agreement at gL = 2 and little doubt as to the approximation
at &p, = 10, the slight deviations in the intermediate values are
possibly attributable to the draftmanship of the published curves.

The practical consequences are slight, however, and the present results
appear valid to about two digit accuracy. The short-dash curve is
equation (40a) (for n = 3/2) and is the interpolation formla proposed
by Probstein [6]. Equation (L5d) supplies another interpolation formila
which affords a better fit on the lower end of the gL scale but at a
sacrifice of algebraic simplicity. In the range 2 < Er, < 6 the inter-
polation formulas yield about the same accuracy but differ in the sign

of the error. For Ep > 1 all results coalesce.
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The next obJjective is to relate the magnitude of q£ - qg to the
wall boundary conditions for the general case of nonblack walls. Equa-
tions (4Ob) and (45e) supply this information for the two linear forms
of the emission function. Considerable simplification is achieved,
however, if the walls are opaque or if they are alike in material prop-
erties. First, we shall restrict attention to opaque walls where

1 -1y =¢€y, 1 -1, =¢p. From equations (29), (3la), and (32) one gets

- +
9, - % 1

. - . (51)
o - oTo® 1+ [-a/(ag, - ¢))1l(1/e0) + (1/ep) - 2]

Substitution into the denominator of the right member, from equa-
tions (40a) or (L5d), provides the desired expression. For example,
equation (LOa) with n = 3/2 yields

G- % L+ 3/b

- T — (52)
oTr* - 0To* 3t /b + [(L/eo) + (1/eg) - 1]

For large and small €y, equation (52) reduces to more familiar
relations.

Figures 3 show, for opaque walls, the function q/(c'I‘L4 - 0T04)
as given by the different approximations. The solid curves are pre-
sumably exact to the accuracy with which they can be read. The short-
dash curves are, in effect, generalizations of Probstein's interpolation

formula and, from equations (L4Oa) and (52), are given by the relation

g = t (53)
ofy,” = oTo” 3t /h + [(L/eo) + (1/ep) - 11
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The remaining curves (long dash) result from use of expression (454a)
in equation (51). The dashed curves are not shown in all cases; dif-
ferences from the solid curve can be estimated from the results shown,
and the fact that the three approximations are indistinguishable for
the lowest curve on each graph.

The relative merits of the simplest approximation, that is, the one
associated with the exponential kernel, appear jjow to have been fully
established insofar as predictions of flux are concerned. We therefore

write, finally, the most general formula based upon this approach:

4 4
-q/[éL(jTTSL) ) (iO(jTioJ: /{% L [@ % ) O % wo) l} } (5%)

Equation (54) embraces and extends the previous interpolation formulas.

The actual distribution of emission, or of @(g), provides the most
exacting demands upon the approximations underlying the predictions. In
figure 4 the curves were calculated by two methods. The solid lines
again correspond to repeated iteration of the cubic expression; the
other curves are given by equation (47), the first iteration of the
linear relation. No attempt was made to include the linear distribu-
tions of @(g) predicted by the simpler methods. To the scale of these
figures both linear distributions conform to the straight lines tangent
to o) at ¢t = gL/z. The standard of comparison comes from the numer-
ical results plotted in [4] and [8]. It does not seem possible, because
of inconsistencies in the published figures, to draw unequivocal con-

clusions about the accuracy. Qualitatively, the results may certainly
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be termed satisféctory but small local deviations exist in each case.
These discrepancies are at most of the order of 1 or 2 percent.
Diminishing preciseness inevitably occurs in the vicinity of the walls.

In figure 5 the dependence of the functions K,, Ki, and A on E£f
is shown according to the best approximations of this paper. These
values are of use in further specific calculations of @(g) and in the
determination of the level of the emission function.

In the initial part of this paper the analysis is cast in a general
form and the problem of radiative transport between walls with rather
arbitrary characteristics is related to the calculations involving black
walls. In fhe latter part of the paper the philosophy is more one of
pragmatism; namely, that to the accuracy of the physical idealization
and to the accuracy of many engineering estimates, 1t is preferable to
retain some analytic control over the results. In particular, the use
of the simplifying assumptions leading to the use of the exponential
kernel yields simple formulas of practical interest. Analytic methods
are shown also to produce solutions of reasonable accuracy. The mathe-
matical nature of the problem of radiative transport is of considerable
interest to theorists, and, in the ultimate degree of perfection, numer-
ical calculations appear to be required. Such methods are essential in
fixing a standard of excellence and need to be understood if restric-
tions are to be relaxed and estimates of the effects of frequency-
dependent a@bsorptivity and emissivity are to be studied. On the other

hand, a good grasp of the qualitative character of the solution is



important in the extension to less idealized cases and algebraic

formulas may be preferable to purely numerical results in filling this

need.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 3, 1963
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